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Abstract

This paper treats the orthogonality condition for a multi-span beam, and its application to forced (transient) vibration of

a two-span beam. The beam is modeled as a Bernoulli–Euler beam. The boundary conditions for the particular case of

two-span beam are clamped–pinned–pinned. An exact closed-form solution is obtained for this problem. Even though

there has been an enormous amount of work on beam vibration, most of the studies are conducted on a single-span beam.

There are some studies on the multi-span beam vibration. However, their treatment is rather specialized in terms of the

applied loading and the initial conditions. None of the studies in the past treats an exact solution for a forced (transient)

vibration of a general two-span beam with arbitrary initial conditions and arbitrary forcing functions. Therefore, the

solution obtained in this paper is new. The key development in the solution is the orthogonality condition for a multi-span

beam. The method of solution developed in this paper establishes a general methodology for the forced (transient)

vibration of a multi-span beam. The closed-form solution obtained in this paper can be used as a benchmark solution for

the transient vibration of a two-span beam.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There has been an enormous amount of study on the vibration of beams in the literature. However, most of
these studies are conducted on a single-span beam [1–8]. There are studies on multi-span beam vibration
[5–19]. However, most of them focus on either numerical approximate solutions of free vibration as well as
forced vibration, or exact analysis for natural frequencies of free vibration. There are some exact analyses of
forced vibration [9,10,14,18,19]. However, they are for a special case of equal span and uniform cross-section
for the entire span [9,10], three-span beam of equal mass density [14], a continuous beam with an infinite
number of identical spans [18], or a continuous beam under moving loads with zero initial conditions [19]. The
most general analytical solution for forced vibration of a multi-span beam in the literature seems to be the one
given by Dugush and Eisenberger [19]. It is based on the polynomial representation of the mode shape, and the
solution is not closed form. Even though the treatment of the eigenfunctions (mode shapes) in Ref. [19] is
fairly general, it may not be called exact, since the eigenvalues are based on an approximate eigenvalue
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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problem due to the inevitable truncation of the infinite series used for the mode shape. In other words,
no matter how accurately the characteristic equation for the eigenvalue problem is solved, the eigenvalues
are still approximate, since the characteristic equation is based on the truncated polynomial power
series representation of the mode shape instead of an exact representation based on the transcendental
functions (sin, cos, sinh, and cosh). Also, the determination of the expansion coefficients for the mode
shape of the entire span (from the first span to the last span) was not made explicit in Ref. [19]. In the
treatment of the forced vibration in their paper [19], Eq. (29) of Ref. [19] was not exactly correct unless EI(x) is
constant.

In the field of multi-span beam vibration, the overwhelming majority of the literature [7–19] discusses beam
vibration under a moving load. Accordingly, the analysis of the vibration is rather specialized in terms of the
applied loading and the initial conditions. As far as the mathematics is concerned, the orthogonality condition
is the key to solve the forced (transient) vibration of the multi-span beam with arbitrary boundary conditions,
arbitrary initial conditions, and arbitrary forcing functions. Relatively few references explicitly discuss
the orthogonality condition for the multi-span beam [14,16,19]. However, none of the references provide the
mathematical proof of the orthogonality condition for the general multi-span beam. Judging from the
literature, it seems that the orthogonality condition for the multi-span beam is taken for granted. Fryba [8], for
example, derives many equations assuming the orthogonality of the normal modes for a single-span beam and
a rectangular plate, but he never proves the orthogonality (see Eqs. (6.8), (12.21), (15.30) in Ref. [8]).
Furthermore, his treatment of a multi-span beam is from an earlier literature, which only covers an equal span
beam, not a general multi-span beam. In his book, Fryba even states (in Section 12.2.1 in Ref. [8]) that
computing the forced vibration is simple, but what is difficult is the determination of free vibration and normal
modes. This statement is true assuming that the orthogonality of the normal modes exists. Many authors cite
Fryba’s book [8] and apparently follow his approach. However, the orthogonality of the normal modes should
not be taken for granted for an arbitrary structure, as Blevins discusses the non-existence of the general
orthogonality principle in the case of mode shapes of vibration of thin plates (Section 11-1 in Ref. [5]). Blevins
even states that a general closed-form solution does not exist for vibration of a rectangular plate with various
elementary boundary conditions on each of the four edges (Section 11-3 in Ref. [5]). The existence of the
orthogonality condition strongly depends on the boundary conditions associated with the boundary value
problem (e.g., vibration problem). Consequently, the orthogonality condition has to be established for each
type of boundary value problems. It should be noted here that the usual Sturm–Liouville theory for the self-
adjoint differential operator of the second order is applicable only to the single-span beam vibration [20–22].
Therefore, the treatment of the orthogonality condition in this paper can be considered as an application of
the extension of the Sturm–Liouville theory to the multi-span beam.

One of the major results of this paper is the mathematical proof of the orthogonality condition for the
multi-span beam of variable cross-section. Since this is a general orthogonality condition for the multi-span
beam, it can be applied to a forced (transient) vibration of a multi-span beam with variable cross-section.
However, in this paper, as a specific application of this general orthogonality condition, we have obtained an
exact closed-form solution for the forced (transient) vibration of a two-span beam, and examined the
numerical results of this solution. Even though only the transient vibration of a two-span beam is discussed as
an application of the general orthogonality condition, this paper nonetheless establishes a method of solution
for the forced (transient) vibration of a multi-span beam of variable cross-section.

In Section 2, the statement of the problem is given. The orthogonality of the eigenfunctions for a multi-span
beam with variable cross-section is established in Section 3. The mathematical formulation for a two-span
beam is given in Section 4, the determination of eigenfunctions is given in Sections 5 and 6, applications to the
transient vibration of a beam with a base motion are given in Sections 7 and 8, the numerical results and
discussion are given in Section 9, and finally the conclusion is given in Section 10.

2. Problem statement

The schematic view of a two-span beam is shown in Fig. 1. The left end is clamped, and the mid-point and
the right end are simply supported. Our objective is to determine the dynamic behavior of this two-span beam.
The beam is modeled as a Bernoulli–Euler beam. The governing equation for the Bernoulli–Euler beam in
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Fig. 1. Schematic view of the two-span beam vibration with two-coordinates systems.
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each span is given by

E1I1
q4y1

qx4
þ r1A1

q2y1

qt2
¼ q1ðx; tÞ ð0oxol1Þ,

E2I2
q4y2

qx4
þ r2A2

q2y2

qt2
¼ q2ðx; tÞ ð0oxol2Þ, (1)

where the positive direction of the spatial coordinate (x) is defined in the direction to the right for the left span
(0oxol1), and it is defined in the direction to the left for the right span (0oxol2). This notational convention
is adopted here to simplify the algebra. The boundary conditions are given by

y1ð0; tÞ ¼ 0; y01ð0; tÞ ¼ 0,

y1ðl1; tÞ ¼ 0; y2ðl2; tÞ ¼ 0; y01ðl1; tÞ ¼ �y02ðl2; tÞ; E1I1y001ðl1; tÞ ¼ E2I2y
00
2ðl2; tÞ,

y2ð0; tÞ ¼ 0; y002ð0; tÞ ¼ 0. (2)

The initial conditions are given by

y1ðx; 0Þ ¼ f 1ðxÞ;
qy1

qt
ðx; 0Þ ¼ g1ðxÞ ð0oxol1Þ,

y2ðx; 0Þ ¼ f 2ðxÞ;
qy2

qt
ðx; 0Þ ¼ g2ðxÞ ð0oxol2Þ. (3)

Our goal is to obtain the solution for Eq. (1) together with Eqs. (2) and (3).

3. Orthogonality of the eigenfunctions for a multi-span beam

In order to solve the boundary value problem defined in Eqs. (1)–(3), we need to establish the orthogonality
of the eigenfunctions for a two-span beam. Since the mathematical treatment of two-span beam and multi-
span beam is essentially the same, we will establish the orthogonality of the eigenfunctions for a multi-span
beam with variable cross-section so that a forced (transient) vibration of the multi-span beam can be solved to
utmost generality. We proceed as follows. First the proof is given for the orthogonality of the eigenfunctions
for a two-span beam. Then by extending the proof, the orthogonality of the eigenfunctions for a multi-span
beam is established.

In order to prove the orthogonality of the eigenfunctions for a two-span beam, let us consider the following
two eigenvalue problems.

Problem 1.

L1ðu1mÞ � o2
mr1ðxÞu1m ¼ 0; 0pxpl1,

L2ðu2mÞ � o2
mr2ðxÞu2m ¼ 0; 0pxpl2, (4)

where

L1 ¼
d2

dx2
p1ðxÞ

d2

dx2

� �
; L2 ¼

d2

dx2
p2ðxÞ

d2

dx2

� �
, (5)
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piðxÞ ¼ EiðxÞI iðxÞ; riðxÞ ¼ riðxÞAiðxÞ ði ¼ 1; 2Þ. (6)

The boundary conditions for u1m and u2m are given by

u1mð0Þ ¼ 0; u01mð0Þ ¼ 0,

u1mðl1Þ ¼ 0; u2mðl2Þ ¼ 0; u01mðl1Þ ¼ �u02mðl2Þ; p1ðl1Þu
00
1mðl1Þ ¼ p2ðl2Þu

00
2mðl2Þ,

u2mð0Þ ¼ 0; u002mð0Þ ¼ 0. (7)

Problem 2.

L1ðu1nÞ � o2
nr1ðxÞu1n ¼ 0; 0pxpl1,

L2ðu2nÞ � o2
nr2ðxÞu2n ¼ 0; 0pxpl2. (8)

The boundary conditions for u1n and u2n are given by

u1nð0Þ ¼ 0; u01nð0Þ ¼ 0,

u1nðl1Þ ¼ 0; u2nðl2Þ ¼ 0; u01nðl1Þ ¼ �u02nðl2Þ; p1ðl1Þu
00
1nðl1Þ ¼ p2ðl2Þu

00
2nðl2Þ,

u2nð0Þ ¼ 0; u002nð0Þ ¼ 0. (9)

It should be noted that the above two problems are the same eigenvalue problem except that the solution for
each problem can be different. It should be also noted that each eigenvalue problem is a pair of ordinary
differential equations, which are coupled in the boundary conditions. By using integration by parts, it can be
shown from Eqs. (7) and (9) thatZ l1

0

½u1mðp1ðxÞu
00
1nÞ
00
� u1nðp1ðxÞu

00
1mÞ
00
�dxþ

Z l2

0

½u2mðp2ðxÞu
00
2nÞ
00
� u2nðp2ðxÞu

00
2mÞ
00
�dx

¼ p1ð0Þu
00
1nð0Þu

0
1mð0Þ � p1ð0Þu

00
1mð0Þu

0
1nð0Þ � ðp1ðxÞu

00
1nÞ
0
jx¼0u1mð0Þ þ ðp1ðxÞu

00
1mÞ
0
jx¼0u1nð0Þ

þ p2ð0Þu
00
2nð0Þu

0
2mð0Þ � p2ð0Þu

00
2mð0Þu

0
2nð0Þ � ðp2ðxÞu

00
2nÞ
0
jx¼0u2mð0Þ þ ðp2ðxÞu

00
2mÞ
0
jx¼0u2nð0Þ. (10)

It can be seen from Eq. (10) that all the terms associated with the intermediate support are eliminated
thanks to the intermediate boundary conditions given by the middle four expressions in both Eqs. (7) and (9).
It should be mentioned that Eq. (10) is valid for arbitrary end boundary conditions. If the particular end
boundary conditions that are given in the first two and the last two expressions of both Eqs. (7) and (9) are
substituted into Eq. (10), the following is obtained:Z l1

0

½u1mðp1ðxÞu
00
1nÞ
00
� u1nðp1ðxÞu

00
1mÞ
00
�dxþ

Z l2

0

½u2mðp2ðxÞu
00
2nÞ
00
� u2nðp2ðxÞu

00
2mÞ
00
�dx ¼ 0. (11)

It can be easily seen from Eq. (10) that Eq. (11) would have been obtained from any other common end
boundary conditions. From Eqs. (4), (8), and (11), we obtain

ðo2
n � o2

mÞ

Z l1

0

r1ðxÞu1mu1n dxþ

Z l2

0

r2ðxÞu2mu2n dx

� �
¼ 0. (12)

Let us assume that all the eigenvalues are single roots. Then m6¼n implies om 6¼on. Under this assumption, it
follows from Eq. (12) thatZ l1

0

r1ðxÞu1mu1n dxþ

Z l2

0

r2ðxÞu2mu2n dx ¼ Pndmn ðn not summedÞ, (13)

where

Pn ¼

Z l1

0

r1ðxÞðu1nðxÞÞ
2 dxþ

Z l2

0

r2ðxÞðu2nðxÞÞ
2 dx. (14)

Eq. (13) is the orthogonality condition for the two-span beam with any of the common end boundary
conditions. It should be mentioned here that we followed the notational convention that is discussed just after
Eq. (1) to simplify the algebra for determination of eigenfunctions.
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Fig. 2. Schematic view of a multi-span beam with one spatial coordinate.
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In order to prove the orthogonality of the eigenfunctions for a multi-span beam, let us now consider the
following two eigenvalue problems for a k-span beam (see Fig. 2). In the following, only one spatial coordinate
x in the right direction is used, and no special notational convention is used.

Problem 1.

L1ðu1mÞ � o2
mr1ðxÞu1m ¼ 0; 0pxpl1;

L2ðu2mÞ � o2
mr2ðxÞu2m ¼ 0; l1pxpl2;

..

.

LkðukmÞ � o2
mrkðxÞukm ¼ 0; lk�1pxplk;

(15)

where

Li ¼
d2

dx2
piðxÞ

d2

dx2

� �
ði ¼ 1; . . . ; kÞ, (16)

piðxÞ ¼ EiðxÞI iðxÞ; riðxÞ ¼ riðxÞAiðxÞ ði ¼ 1; . . . ; kÞ. (17)

The intermediate boundary conditions for u1m through ukm are given by

u1mðl1Þ ¼ 0; u2mðl1Þ ¼ 0; u01mðl1Þ ¼ u02mðl1Þ; p1ðl1Þu
00
1mðl1Þ ¼ p2ðl1Þu

00
2mðl1Þ;

u2mðl2Þ ¼ 0; u3mðl2Þ ¼ 0; u02mðl1Þ ¼ u03mðl2Þ; p2ðl2Þu
00
2mðl2Þ ¼ p3ðl2Þu

00
3mðl2Þ;

..

.

uk�1;mðlk�1Þ ¼ 0; ukmðlk�1Þ ¼ 0;

u0k�1;mðlk�1Þ ¼ u0kmðlk�1Þ; pk�1ðlk�1Þu
00
k�1;mðlk�1Þ ¼ pkðlk�1Þu

00
kmðlk�1Þ:

(18)

Problem 2.

L1ðu1nÞ � o2
nr1ðxÞu1n ¼ 0; 0pxpl1;

L2ðu2nÞ � o2
nr2ðxÞu2n ¼ 0; l1pxpl2;

..

.

LkðuknÞ � o2
nrkðxÞukn ¼ 0; lk�1pxplk:

(19)

The intermediate boundary conditions for u1n through ukn are given by

u1nðl1Þ ¼ 0; u2nðl1Þ ¼ 0; u01nðl1Þ ¼ u02nðl1Þ; p1ðl1Þu
00
1nðl1Þ ¼ p2ðl1Þu

00
2nðl1Þ;

u2nðl2Þ ¼ 0; u3nðl2Þ ¼ 0; u02nðl2Þ ¼ u03nðl2Þ; p2ðl2Þu
00
2nðl2Þ ¼ p3ðl2Þu

00
3nðl2Þ;

..

.

uk�1;nðlk�1Þ ¼ 0; uknðlk�1Þ ¼ 0;

u0k�1;nðlk�1Þ ¼ u0knðlk�1Þ; pk�1ðlk�1Þu
00
k�1;nðlk�1Þ ¼ pkðlk�1Þu

00
knðlk�1Þ:

(20)

It should be noted that the above two problems are the same eigenvalue problem except that the solution for
each problem can be different. It should be also noted that each eigenvalue problem is a set of k ordinary
differential equations, which are coupled in the boundary conditions. In a completely similar manner to
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Eq. (10), by using integration by parts, it can be shown from Eqs. (18) and (20) thatZ l1

0

½u1mðp1ðxÞu
00
1nÞ
00
� u1nðp1ðxÞu

00
1mÞ
00
�dxþ

Z l2

l1

½u2mðp2ðxÞu
00
2nÞ
00
� u2nðp2ðxÞu

00
2mÞ
00
�dx

� � � þ

Z lk

lk�1

½ukmðpkðxÞu
00
knÞ
00
� uknðpkðxÞu

00
kmÞ
00
�dx

¼ p1ð0Þu
00
1nð0Þu

0
1mð0Þ � p1ð0Þu

00
1mð0Þu

0
1nð0Þ � ðp1ðxÞu

00
1nÞ
0
jx¼0u1mð0Þ þ ðp1ðxÞu

00
1mÞ
0
jx¼0u1nð0Þ

� pkðlkÞu
00
knðlkÞu

0
kmðlkÞ þ pkðlkÞu

00
kmðlkÞu

0
knðlkÞ þ ðpkðxÞu

00
knÞ
0
jx¼lk

ukmðlkÞ

� ðpkðxÞu
00
kmÞ
0
jx¼lk

uknðlkÞ. (21)

It can be seen from Eq. (21) that all the terms associated with the intermediate support are eliminated
thanks to the intermediate boundary conditions given by Eqs. (18) and (20). It should be mentioned that
Eq. (21) is valid for arbitrary end boundary conditions. For any of the common end boundary conditions, the
right-hand side of Eq. (21) becomes zero. Therefore, we haveZ l1

0

½u1mðp1ðxÞu
00
1nÞ
00
� u1nðp1ðxÞu

00
1mÞ
00
�dxþ

Z l2

l1

½u2mðp2ðxÞu
00
2nÞ
00
� u2nðp2ðxÞu

00
2mÞ
00
�dx

� � � þ

Z lk

lk�1

½ukmðpkðxÞu
00
knÞ
00
� uknðpkðxÞu

00
kmÞ
00
�dx ¼ 0. (22)

From Eqs. (15), (19), and (22), we obtain

ðo2
n � o2

mÞ

Z l1

0

r1ðxÞu1mu1n dxþ

Z l2

l1

r2ðxÞu2mu2n dxþ � � � þ

Z lk

lk�1

rkðxÞukmukn dx

� �
¼ 0. (23)

Under the assumption that all the eigenvalues are single roots, it follows from Eq. (23) thatZ l1

0

r1ðxÞu1mu1n dxþ

Z l2

l1

r2ðxÞu2mu2n dxþ � � � þ

Z lk

lk�1

rkðxÞukmukn dx ¼ Pndmn, (24)

where no summation is taken on n, and

Pn ¼

Z l1

0

r1ðxÞðu1nðxÞÞ
2 dxþ

Z l2

l1

r2ðxÞðu2nðxÞÞ
2 dxþ � � � þ

Z lk

lk�1

rkðxÞðuknðxÞÞ
2 dx. (25)

Eq. (24) is the orthogonality condition for the multi-span beam with any of the common end boundary conditions.

Hayashikawa and Watanabe [14] is one of the first papers to discuss the orthogonality of eigenfunctions of
multi-span beam. Some of the more recent papers [15–17] also refer to their paper [14]. However, their result
(22a) in Ref. [14] is not correct for a general N-span beam. Even though the system they are working on is an N-
span continuous beam with piecewise constant cross-sectional properties, their derivation does not reflect that
fact. Additionally, their evaluation of the constant for the orthogonality condition, Eq. (22b) in Ref. [14], may
not be correct, unless their N-span beam and the end boundary conditions are of a very special kind. Since
enough details on the derivation of the orthogonality are not given in Ref. [14], it is rather hard to evaluate the
merit of their contribution on this subject. It certainly gives this author an impression that their derivation is not
properly done even for a special case of equal mass density for all the spans. In any case their result, Eq. (22a) in
Ref. [14], is only valid when the mass density riAi (i ¼ 1�N) is the same for all the spans from the first to the nth.

4. Mathematical formulation for the two-span beam vibration

In order to obtain the solution to Eqs. (1), (2) and (3), let us first consider a set of homogeneous equations,
which is derived from Eq. (1)

E1I1
q4yH

1

qx4
þ r1A1

q2yH
1

qt2
¼ 0 ð0oxol1Þ,

E2I2
q4yH

2

qx4
þ r2A2

q2yH
2

qt2
¼ 0 ð0oxol2Þ. (26)
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Let us seek a solution of the following form:

yH
1 ðx; tÞ ¼ Y 1ðxÞ e

iot,

yH
2 ðx; tÞ ¼ Y 2ðxÞ e

iot. (27)

By substituting Eq. (27) into Eq. (26), we obtain

d4Y 1

dx4
�

o2

a2
1

Y 1 ¼ 0; a2
1 ¼

E1I1

r1A1
ð0oxol1Þ,

d4Y 2

dx4
�

o2

a2
2

Y 2 ¼ 0; a2
2 ¼

E2I2

r2A2
ð0oxol2Þ. (28)

Even though both Y1 and Y2 are developed for the homogeneous equations shown in Eq. (26), they are
useful for constructing the solution to the original inhomogeneous Eq. (1), as will be seen later. The boundary
conditions for Y1 and Y2 are given by

Y 1ð0Þ ¼ 0; Y 01ð0Þ ¼ 0,

Y 1ðl1Þ ¼ 0; Y 2ðl2Þ ¼ 0; Y 01ðl1Þ ¼ �Y 02ðl2Þ; E1I1Y
00
1ðl1Þ ¼ E2I2Y 002ðl2Þ,

Y 2ð0Þ ¼ 0; Y 002ð0Þ ¼ 0. (29)

Eqs. (28) and (29) define an eigenvalue problem with eigenfunctions Y1n and Y2n and eigenvalues on The
eigenvalues on are determined from the boundary conditions given in Eq. (29). Applying the orthogonality
condition obtained in the previous section to the above system (i.e., a two-span beam with piecewise constant
cross-sectional properties), we obtain

r1A1

Z l1

0

Y 1mY 1n dxþ r2A2

Z l2

0

Y 2mY 2n dx ¼ Pndmn. (30)

Here n is not summed and

Pn ¼ r1A1

Z l1

0

Y 2
1n dxþ r2A2

Z l2

0

Y 2
2n dx. (31)

Let us expand the solution to Eq. (1) as

y1ðx; tÞ ¼
X1
n¼1

Y 1nðxÞfnðtÞ ð0oxol1Þ,

y2ðx; tÞ ¼
X1
n¼1

Y 2nðxÞfnðtÞ ð0oxol2Þ. (32)

Substituting Eq. (32) into Eq. (1), we have

E1I1
X1
n¼1

d4Y 1n

dx4
fn þ r1A1

X1
n¼1

Y 1n

d2fn

dt2
¼ q1ðx; tÞ,

E2I2
X1
n¼1

d4Y 2n

dx4
fn þ r2A2

X1
n¼1

Y 2n

d2fn

dt2
¼ q2ðx; tÞ. (33)

Let us rewrite Eq. (28) for the nth eigenfunction as

d4Y 1n

dx4
� b41nY 1n ¼ 0; b21n ¼

on

a1
ð0oxol1Þ,

d4Y 2n

dx4
� b42nY 2n ¼ 0; b22n ¼

on

a2
ð0oxol2Þ. (34)
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From Eqs. (33) and (34), we obtain

X1
n¼1

Y 1n

d2fn

dt2
þ o2

nfn

� �
¼

q1ðx; tÞ

r1A1
,

X1
n¼1

Y 2n
d2fn

dt2
þ o2

nfn

� �
¼

q2ðx; tÞ

r2A2
. (35)

From Eq. (35), we have

r1A1

Z l1

0

X1
n¼1

Y 1mY 1n

d2fn

dt2
þ o2

nfn

� �
dxþ r2A2

Z l2

0

X1
n¼1

Y 2mY 2n

d2fn

dt2
þ o2

nfn

� �
dx

¼

Z l1

0

Y 1mðxÞq1ðx; tÞdxþ

Z l2

0

Y 2mðxÞq2ðx; tÞdx. (36)

By using the orthogonality condition given in Eq. (30) in Eq. (36), and renaming the index from m to n after
the algebraic manipulations, we obtain

d2fn

dt2
þ o2

nfn ¼ hnðtÞ, (37)

where

hnðtÞ ¼
1

Pn

Z l1

0

Y 1nðxÞq1ðx; tÞdxþ

Z l2

0

Y 2nðxÞq2ðx; tÞdx

� �
(38)

and Pn is defined in Eq. (31). It can be easily seen from Eqs. (32) and (29) that y1(x, t) and y2(x, t) satisfy the
boundary conditions given in Eq. (2). Substituting Eq. (32) into Eq. (3), we have

X1
n¼1

Y 1nðxÞfnð0Þ ¼ f 1ðxÞ;
X1
n¼1

Y 1nðxÞ
dfn

dt
ð0Þ ¼ g1ðxÞ,

X1
n¼1

Y 2nðxÞfnð0Þ ¼ f 2ðxÞ;
X1
n¼1

Y 2nðxÞ
dfn

dt
ð0Þ ¼ g2ðxÞ. (39)

From the orthogonality condition (30) and Eq. (39), we obtain

fnð0Þ ¼
1

Pn

r1A1

Z l1

0

Y 1nðxÞf 1ðxÞdxþ r2A2

Z l2

0

Y 2nðxÞf 2ðxÞdx

� �
,

dfn

dt
ð0Þ ¼

1

Pn

r1A1

Z l1

0

Y 1nðxÞg1ðxÞdxþ r2A2

Z l2

0

Y 2nðxÞg2ðxÞdx

� �
. (40)

It is seen from Eqs. (37) and (40) that, to determine f(t), we need to solve the following initial value
problem:

d2fn

dt2
þ o2

nfn ¼ hnðtÞ, (41)

fnð0Þ ¼ cn,

dfn

dt
ð0Þ ¼ dn, (42)

where

cn ¼
1

Pn

r1A1

Z l1

0

Y 1nðxÞf 1ðxÞdxþ r2A2

Z l2

0

Y 2nðxÞf 2ðxÞdx

� �
,

dn ¼
1

Pn

r1A1

Z l1

0

Y 1nðxÞg1ðxÞdxþ r2A2

Z l2

0

Y 2nðxÞg2ðxÞdx

� �
. (43)
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The solution to Eq. (41) with Eq. (42) is given by

fnðtÞ ¼
dn

on

sin ontþ cn cos ontþ
1

on

Z t

0

hnðuÞ sin onðt� uÞdu. (44)

Therefore, the solution to Eq. (1) together with Eqs. (2) and (3) is given from Eq. (32) as

y1ðx; tÞ ¼
X1
n¼1

Y 1nðxÞ
dn

on

sin ontþ cn cos ontþ
1

on

Z t

0

hnðuÞ sin onðt� uÞdu

� �
ð0oxol1Þ,

y2ðx; tÞ ¼
X1
n¼1

Y 2nðxÞ
dn

on

sin ontþ cn cos ontþ
1

on

Z t

0

hnðuÞ sin onðt� uÞdu

� �
ð0oxol2Þ. (45)

The bending moment M(x,t) can be obtained from Eq. (45) as

M1ðx; tÞ ¼ E1I1y
00
1ðx; tÞ

¼ E1I1
X1
n¼1

d2Y 1n

dx2
ðxÞ

dn

on

sin ontþ cn cos ontþ
1

on

Z t

0

hnðuÞ sin onðt� uÞdu

� �
ð0oxol1Þ,

M2ðx; tÞ ¼ E2I2y
00
2ðx; tÞ

¼ E2I2
X1
n¼1

d2Y 2n

dx2
ðxÞ

dn

on

sin ontþ cn cos ontþ
1

on

Z t

0

hnðuÞ sin onðt� uÞdu

� �
ð0oxol2Þ. (46)
5. Determination of the eigenfunctions

The eigenfunctions Y1 and Y2 are defined by Eqs. (34) and (29). The solution to Eqs. (34) and (29) is
given by

Y 1nðxÞ ¼ sinh b1nx� sin b1nx� g1nðcosh b1nx� cos b1nxÞ,

Y 2nðxÞ ¼ g3nðg2n sinh b2nx� sin b2nxÞ, (47)

where

g1n ¼
sinh b1nl1 � sin b1nl1

cosh b1nl1 � cos b1nl1
,

g2n ¼
sin b2nl2

sinh b2nl2
, (48)

g3n ¼ �
b1n½cosh b1nl1 � cos b1nl1 � g1nðsinh b1nl1 þ sin b1nl1Þ�

b2n½g2n cosh b2nl2 � cos b2nl2�
,

b21n ¼
on

a1
; a2

1 ¼
E1I1

r1A1
,

b22n ¼
on

a2
; a2

2 ¼
E2I2

r2A2
, (49)

and on is the nth root of the following characteristic equation:

2E2I2b2nð1� cos b1nl1 cosh b1nl1Þ sin b2nl2 sinh b2nl2,

þ E1I1b1nðsin b1nl1 cosh b1nl1 � cos b1nl1 sinh b1nl1Þðsin b2nl2 cosh b2nl2 � cos b2nl2 sinh b2nl2Þ ¼ 0. (50)

Since Eq. (50) is a transcendental equation for on, it has to be solved numerically.
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6. Determination of the eigenfunctions when E1I1 ¼ E2I2 and q1A1 ¼ q2A2

Let us now consider a special case when E1I1 ¼ E2I2 ¼ EI and r1A1 ¼ r2A2 ¼ rA. Then we have

b21n ¼ b22n ¼
on

a
ð� b2nÞ,

a2
1 ¼ a2

2 ¼
EI

rA
ð� a2Þ. (51)

From Eqs. (47)–(50), the eigenfunctions are given by

Y 1nðxÞ ¼ sinh bnx� sin bnx� g1nðcosh bnx� cos bnxÞ,

Y 2nðxÞ ¼ g3nðg2n sinh bnx� sin bnxÞ, (52)

where

g1n ¼
sinh bnl1 � sin bnl1

cosh bnl1 � cos bnl1
,

g2n ¼
sin bnl2

sinh bnl2
, (53)

g3n ¼ �
cosh bnl1 � cos bnl1 � g1nðsinh bnl1 þ sin bnl1Þ

g2n cosh bnl2 � cos bnl2

¼
2 sinh bnl2ðcosh bnl1 cos bnl1 � 1Þ

ðcosh bnl1 � cos bnl1Þðcosh bnl2 sin bnl2 � sinh bnl2 cos bnl2Þ
,

and bn is defined as the nth root of the following characteristic equation:

2ð1� cos bl1 cosh bl1Þ sin bl2 sinh bl2 þ ðsin bl1 cosh bl1 � cos bl1 sinh bl1Þ

�ðsin bl2 cosh bl2 � cos bl2 sinh bl2Þ ¼ 0. (54)

Since Eq. (54) is also a transcendental equation (for bn), it has to be solved numerically. It should be noted
here that the eigenfunctions obtained above are different from those given in Blevins [5]. Blevins actually listed
the eigenfunctions obtained by Gorman [23,24], and there was an error in Gorman’s results [23,24]. In
addition to the fact that Gorman used a negative of our eigenfunctions, a factor sinh bnl2 was missing from
their definition of g3n above.
7. Application to the transient vibration of a beam with a base motion

Let us consider the case where there is a base motion to the beam but no other applied load. The governing
equation for the Bernoulli–Euler beam in each span is given by

E1I1
q4y1tot

qx4
þ r1A1

q2y1tot

qt2
¼ 0 ð0oxol1Þ,

E2I2
q4y2tot

qx4
þ r2A2

q2y2tot

qt2
¼ 0 ð0oxol2Þ, (55)
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where y1tot and y2tot are the total displacement of each beam, and they are given by

y1totðx; tÞ ¼ y1ðx; tÞ þ 1�
x

ltot

� �
yB1ðtÞ þ

x

ltot
yB2ðtÞ ð0oxol1Þ,

y2totðx; tÞ ¼ y2ðx; tÞ þ 1�
x

ltot

� �
yB2ðtÞ þ

x

ltot
yB1ðtÞ ð0oxol2Þ, (56)

where

ltot ¼ l1 þ l2. (57)

Here yB1(t) and yB2(t) are a given displacement of the left base, and of the right base, respectively. Also in
Eq. (55), as before, the spatial coordinate (x) is defined in the direction to the right for the left span (0oxol1),
and it is defined in the direction to the left for the right span (0oxol2). Substituting Eq. (56) into Eq. (55), we
obtain

E1I1
q4y1

qx4
þ r1A1

q2y1

qt2
¼ q1BðtÞ ð0oxol1Þ,

E2I2
q4y2

qx4
þ r2A2

q2y2

qt2
¼ q2BðtÞ ð0oxol2Þ, (58)

where

q1BðtÞ ¼ � r1A1 1�
x

ltot

� �
q2yB1

qt2
þ

x

ltot

q2yB2

qt2

� �
ð0oxol1Þ,

q2BðtÞ ¼ � r2A2 1�
x

ltot

� �
q2yB2

qt2
þ

x

ltot

q2yB1

qt2

� �
ð0oxol2Þ. (59)

The boundary conditions for the relative displacements y1 and y2 are given by

y1ð0; tÞ ¼ 0; y01ð0; tÞ ¼ 0,

y1ðl1; tÞ ¼ 0; y2ðl2; tÞ ¼ 0; y01ðl1; tÞ ¼ �y02ðl2; tÞ; E1I1y001ðl1; tÞ ¼ E2I2y
00
2ðl2; tÞ,

y2ð0; tÞ ¼ 0; y002ð0; tÞ ¼ 0. (60)

The initial conditions are given by

y1ðx; 0Þ ¼ f 1ðxÞ;
qy1

qt
ðx; 0Þ ¼ g1ðxÞ ð0oxol1Þ,

y2ðx; 0Þ ¼ f 2ðxÞ;
qy2

qt
ðx; 0Þ ¼ g2ðxÞ ð0oxol2Þ. (61)

Therefore, the transient vibration of a beam with a base motion is reduced to a special case of the beam
vibration which was considered in the previous sections.

8. Transient vibration of a beam with a harmonic base motion

Let us consider the case where

E1I1 ¼ E2I2 ¼ EI ,

r1A1 ¼ r2A2 ¼ rA,

yB1ðtÞ ¼ yB2ðtÞ ¼ yBðtÞ. (62)

Then we have

q1ðx; tÞ ¼ q2ðx; tÞ ¼ qðtÞ, (63)
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where

qðtÞ ¼ �rA
q2yB

qt2
. (64)

Let us set the initial conditions as

y1ðx; 0Þ ¼ 0;
qy1

qt
ðx; 0Þ ¼ 0 ð0oxol1Þ,

y2ðx; 0Þ ¼ 0;
qy2

qt
ðx; 0Þ ¼ 0 ð0oxol2Þ. (65)

From Eq. (45), the solution is given by

y1ðx; tÞ ¼
X1
n¼1

Y 1nðxÞ

on

Z t

0

hnðuÞ sin onðt� uÞdu ð0oxol1Þ,

y2ðx; tÞ ¼
X1
n¼1

Y 2nðxÞ

on

Z t

0

hnðuÞ sin onðt� uÞdu ð0oxol2Þ. (66)

Substituting Eq. (64) into Eq. (38), we have

hnðtÞ ¼ �
rA

Pn

q2yB

qt2

Z l1

0

Y 1nðxÞdxþ

Z l2

0

Y 2nðxÞdx

� �
. (67)

Substituting Eq. (62) into Eq. (31), we have

Pn ¼ rA

Z l1

0

Y 2
1n dxþ

Z l2

0

Y 2
2n dx

� �
. (68)

Substituting Eq. (68) into Eq. (67), we obtain

hnðtÞ ¼ �Ln

q2yB

qt2
, (69)

where

Ln ¼

R l1
0 Y 1nðxÞdxþ

R l2
0 Y 2nðxÞdxR l1

0 Y 2
1n dxþ

R l2
0 Y 2

2n dx
. (70)

Substituting Eq. (69) into Eq. (66), we obtain

y1ðx; tÞ ¼ �
X1
n¼1

Ln

on

Y 1nðxÞcnðtÞ ð0oxol1Þ,

y2ðx; tÞ ¼ �
X1
n¼1

Ln

on

Y 2nðxÞcnðtÞ ð0oxol2Þ, (71)

where

cnðtÞ ¼

Z t

0

q2yB

qu2
sin onðt� uÞdu. (72)

Eq. (71) is the solution for the vibration of a beam with a general base motion when E1I1 ¼ E2I2 ¼ EI

and r1A1 ¼ r2A2 ¼ rA, and the initial conditions are all zero. When the base motion is harmonic, we
can set

q2yB

qu2
¼ aB sin oBu, (73)
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where aB is the base acceleration. Substituting Eq. (73) into Eq. (72), and performing the integration, we
obtain

cnðtÞ ¼
aB

o2
n � o2

B

ðon sin oBt� oB sin ontÞ. (74)

Substituting Eq. (74) into Eq. (71), we finally obtain

y1ðx; tÞ ¼ � aB

X1
n¼1

Ln

o2
n � o2

B

Y 1nðxÞ sin oBt�
oB

on

sin ont

� �
ð0oxol1Þ,

y2ðx; tÞ ¼ � aB

X1
n¼1

Ln

o2
n � o2

B

Y 2nðxÞ sin oBt�
oB

on

sin ont

� �
ð0oxol2Þ. (75)

A non-dimensional displacement can be defined from Eq. (75) as

y�1ðx; tÞ ¼
y1ðx; tÞ

l
¼ �

aB

l

X1
n¼1

Ln

o2
n � o2

B

Y 1nðxÞ sin oBt�
oB

on

sin ont

� �
ð0oxol1Þ,

y�2ðx; tÞ ¼
y2ðx; tÞ

l
¼ �

aB

l

X1
n¼1

Ln

o2
n � o2

B

Y 2nðxÞ sin oBt�
oB

on

sin ont

� �
ð0oxol2Þ, (76)

where

l ¼
l1 þ l2

2
. (77)

The bending moment is obtained from Eq. (75) as

M1ðx; tÞ ¼ � aBEI
X1
n¼1

Ln

o2
n � o2

B

Y 001nðxÞ sin oBt�
oB

on

sin ont

� �
ð0oxol1Þ,

M2ðx; tÞ ¼ � aBEI
X1
n¼1

Ln

o2
n � o2

B

Y 002nðxÞ sin oBt�
oB

on

sin ont

� �
ð0oxol2Þ. (78)

A non-dimensional bending moment can be defined from Eq. (78) as

M�
1ðx; tÞ ¼

M1ðx; tÞ

EI=l
¼ �aBl

X1
n¼1

Ln

o2
n � o2

B

Y 001nðxÞ sin oBt�
oB

on

sin ont

� �
ð0oxol1Þ,

M�
2ðx; tÞ ¼

M2ðx; tÞ

EI=l
¼ �aBl

X1
n¼1

Ln

o2
n � o2

B

Y 002nðxÞ sin oBt�
oB

on

sin ont

� �
ð0oxol2Þ. (79)

9. Numerical results and discussion

Let us consider the transient vibration of a beam with a harmonic base motion with the following
parameter:

E1I1 ¼ E2I2 ¼ EI ; r1A1 ¼ r2A2 ¼ rA,

l1 ¼ l2 ¼ l ¼ 1m;

a ¼

ffiffiffiffiffiffiffi
EI

rA

s
¼ 75m2=s;

oB ¼ 100 rad=s;

aB ¼ 100m=s2: (80)

The value of ‘‘a’’ given above approximately corresponds to the steel bar of a square cross-section of
0.05m� 0.05m. If we assume that E ¼ 2� 1011 Pa, r ¼ 7800 kg/m3 for a square cross-section of
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0.05m� 0.05m, ‘‘a’’ actually becomes 73.0882, which is close to 75 above. The magnitude of the harmonic
acceleration given above is about 10 g. The time histories of the non-dimensional beam displacement at the
mid-span (left span and right span) are shown in Fig. 3. Here we have used the following notation so that we
can use the conventional spatial coordinate x continuously for both spans

y�ðx; tÞ ¼
y�1ðx; tÞ; 0oxol1;

y�2ðltot � x; tÞ; l1oxoltot;

(
(81)
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-0.00005

0.00005

0.0001

0.02 0.04 0.06 0.08 0.1
t (sec)

y∗ 
(x

,t)

Fig. 3. Time history of the non-dimensional beam displacement at (a) x ¼ 0.5 (solid line, in the left half of the beam), (b) x ¼ 1.5 (dashed

line, in the right half of the beam).
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0.00005

0.5 1 1.5 2y∗  (
x,
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x (m)

0.0001

Fig. 4. Non-dimensional beam displacement over the entire span (0oxo2) at (a) t ¼ 0.01 (solid line), (b) t ¼ 0.02 (dashed-dot line),

(c) t ¼ 0.03 (large dashed line), (d) t ¼ 0.04 (medium dashed line), and (e) t ¼ 0.05 (small dashed line).
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0.02 0.04 0.06 0.08 0.1

t (sec)

M
∗  (
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Fig. 5. Time history of the non-dimensional bending moment at (a) x ¼ 0 (solid line, the clamped end), (b) x ¼ 0.5 (dashed dot line, in the

left half), (c) x ¼ 1 (large dashed line, the mid-support), (d) x ¼ 1.5 (medium dashed line, in the right half).
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M
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Fig. 6. Non-dimensional bending moment over the entire span (0oxo2) at (a) t ¼ 0.01 (solid line), (b) t ¼ 0.02 (very large dashed line),

(c) t ¼ 0.03 (large dashed line), (d) t ¼ 0.032 (medium dashed line), (e) t ¼ 0.035 (small dashed line), (f) t ¼ 0.04 (large dashed dot line),

(g) t ¼ 0.0475 (dashed dot line), and (h) t ¼ 0.05 (dashed double dot line).
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where ltot is defined by Eq. (57). The non-dimensional beam displacements over the entire span at different
times are shown in Fig. 4. A similar definition as Eq. (81) is also made for the non-dimensional bending
moment M�(x,t). The time histories of the non-dimensional bending moment at four different locations are
shown in Fig. 5. The non-dimensional bending moment diagrams over the entire span at different times are
shown in Fig. 6. The numerical results in these figures are obtained by using the first 20 modes of vibration. It
can be seen from the time histories that the period of the beam vibration corresponds approximately to the
period of the harmonic excitation (i.e., 2p/100 ¼ 0.0628 s). It is seen from Fig. 4 that the beam displacement is
larger in the right span as expected. It is also seen from Fig. 6 that the magnitude of the bending moment at the
mid-support is often the greatest. It can also be seen from Fig. 6(c) and (d) that the inversion (reversal of the
sign) of the bending moment diagram occurs near t ¼ 0.032 s.

10. Conclusion

Orthogonality of the eigenfunctions for a multi-span beam is mathematically established to the utmost
generality. As an application of this orthogonality condition, forced (transient) vibration of a two-span beam
is treated. The beam is modeled as a Bernoulli–Euler beam, and the boundary conditions are
clamped–pinned–pinned. An exact closed-form solution is obtained for this problem. Even though there
has been an enormous amount of work on beam vibration, none of the studies in the past treat an exact
solution for a forced (transient) vibration of a general two-span beam with arbitrary initial conditions and
arbitrary forcing functions. Therefore, to the best of the author’s knowledge, the solution obtained in this
paper is new. The method of solution developed in this paper establishes a general methodology for the forced
(transient) vibration of a multi-span beam. The closed-form solution obtained in this paper can be used as a
benchmark solution for the transient vibration of a two-span beam. Numerical results are also provided for
the two-span beam vibration caused by the harmonic base excitation.
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